Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Competition and Genotype-by-Environment Interaction in Natural Breeding Substrates of Drosophila

Mauro Santos, Karel T. Eisses and Antonio Fontdevila
Evolution
Vol. 53, No. 1 (Feb., 1999), pp. 175-186
DOI: 10.2307/2640930
Stable URL: http://www.jstor.org/stable/2640930
Page Count: 12
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Competition and Genotype-by-Environment Interaction in Natural Breeding Substrates of Drosophila
Preview not available

Abstract

Although empirical studies frequently suggest that genotype-by-environment (G x E) interaction can maintain genetic variation, very few data are available to test for the specific conditions necessary for the existence of a protected polymorphism (i.e., the property of persistence of an allele even when initially rare). Drosophila species live in patchy environments and their local population structure may be characterized to some extent by Levene's migration pattern, namely by a single pool of individuals that presumably mate at random and breed on discrete and ephemeral resources. We present here a field experiment that links Drosophila ecology and population genetics, which used the alcohol dehydrogenase (Adh) and α-glycerophosphate dehydrogenase (αGpdh) polymorphic loci in D. melanogaster flies raised from Opuntia ficus-indica fruits (prickly pears). The results show that there is density-dependent mortality in those fruits with a relatively high number of larvae (i.e., selection is "soft") and suggest that there is differential viability for αGpdh genotypes. Additionally, a pattern of G x E interaction for fitness values, which is fully compatible with the theoretical conditions required for the existence of a protected polymorphism, was found after weighting the fitness estimates by the relative contribution that each fruit makes to the total adult population. The strong association between AdhS and αGpdhF alleles suggests that the occurrence of the common cosmopolitan inversion In(2L)t in the population might be responsible for the negative frequency-dependent selection predicted by Levene's model when genetic variation persists in heterogeneous environments.

Page Thumbnails

  • Thumbnail: Page 
175
    175
  • Thumbnail: Page 
176
    176
  • Thumbnail: Page 
177
    177
  • Thumbnail: Page 
178
    178
  • Thumbnail: Page 
179
    179
  • Thumbnail: Page 
180
    180
  • Thumbnail: Page 
181
    181
  • Thumbnail: Page 
182
    182
  • Thumbnail: Page 
183
    183
  • Thumbnail: Page 
184
    184
  • Thumbnail: Page 
185
    185
  • Thumbnail: Page 
186
    186