Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Incorporation of Beef Heart Cytochrome c Oxidase as a Proton-Motive Force-Generating Mechanism in Bacterial Membrane Vesicles

Arnold J. M. Driessen, Wim De Vrij and Wil N. Konings
Proceedings of the National Academy of Sciences of the United States of America
Vol. 82, No. 22 (Nov. 15, 1985), pp. 7555-7559
Stable URL: http://www.jstor.org/stable/26413
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Incorporation of Beef Heart Cytochrome c Oxidase as a Proton-Motive Force-Generating Mechanism in Bacterial Membrane Vesicles
Preview not available

Abstract

Membrane vesicles derived from the strictly fermentative lactic acid bacterium Streptococcus cremoris have been fused with proteoliposomes containing the beef heart mitochondrial cytochrome c oxidase by means of a freeze/thawsonication technique. Evidence that fusion has taken place was obtained by freeze-etch electron microscopy, showing a lessdense intramembranous particle distribution in the fused membranes that in the bacterial membranes, and by sucrose gradient centrifugation, indicating a buoyant density of the majority of the membranes after fusion that was between the buoyant densities of the starting membrane preparations. In the fused membranes, 55-60% of the cytochrome c oxidase molecules are oriented with the cytochrome c binding site at the outer surface of the membrane. With the electron-donor system ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine/cytochrome c, a high proton-motive force (>130 mV), inside negative and alkaline, can be generated in the fused membrane, and this proton-motive force can drive secondary transport of several amino acids. The procedure described can be used for incorporating a proton-motive force-generating system in isolated membrane vesicles from bacterial or eukaryotic origin that lack a suitable primary proton pump.

Page Thumbnails

  • Thumbnail: Page 
7555
    7555
  • Thumbnail: Page 
7556
    7556
  • Thumbnail: Page 
7557
    7557
  • Thumbnail: Page 
7558
    7558
  • Thumbnail: Page 
7559
    7559