Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Concentration of Measure Inequalities for Markov Chains and Φ-Mixing Processes

Paul-Marie Samson
The Annals of Probability
Vol. 28, No. 1 (Jan., 2000), pp. 416-461
Stable URL: http://www.jstor.org/stable/2652970
Page Count: 46
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Concentration of Measure Inequalities for Markov Chains and Φ-Mixing Processes
Preview not available

Abstract

We prove concentration inequalities for some classes of Markov chains and Φ-mixing processes, with constants independent of the size of the sample, that extend the inequalities for product measures of Talagrand. The method is based on information inequalities put forward by Marton in case of contracting Markov chains. Using a simple duality argument on entropy, our results also include the family of logarithmic Sobolev inequalities for convex functions. Applications to bounds on supremum of dependent empirical processes complete this work.

Page Thumbnails

  • Thumbnail: Page 
416
    416
  • Thumbnail: Page 
417
    417
  • Thumbnail: Page 
418
    418
  • Thumbnail: Page 
419
    419
  • Thumbnail: Page 
420
    420
  • Thumbnail: Page 
421
    421
  • Thumbnail: Page 
422
    422
  • Thumbnail: Page 
423
    423
  • Thumbnail: Page 
424
    424
  • Thumbnail: Page 
425
    425
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433
  • Thumbnail: Page 
434
    434
  • Thumbnail: Page 
435
    435
  • Thumbnail: Page 
436
    436
  • Thumbnail: Page 
437
    437
  • Thumbnail: Page 
438
    438
  • Thumbnail: Page 
439
    439
  • Thumbnail: Page 
440
    440
  • Thumbnail: Page 
441
    441
  • Thumbnail: Page 
442
    442
  • Thumbnail: Page 
443
    443
  • Thumbnail: Page 
444
    444
  • Thumbnail: Page 
445
    445
  • Thumbnail: Page 
446
    446
  • Thumbnail: Page 
447
    447
  • Thumbnail: Page 
448
    448
  • Thumbnail: Page 
449
    449
  • Thumbnail: Page 
450
    450
  • Thumbnail: Page 
451
    451
  • Thumbnail: Page 
452
    452
  • Thumbnail: Page 
453
    453
  • Thumbnail: Page 
454
    454
  • Thumbnail: Page 
455
    455
  • Thumbnail: Page 
456
    456
  • Thumbnail: Page 
457
    457
  • Thumbnail: Page 
458
    458
  • Thumbnail: Page 
459
    459
  • Thumbnail: Page 
460
    460
  • Thumbnail: Page 
461
    461