Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Sexual Dimorphism of Head Size in Gallotia galloti: Testing the Niche Divergence Hypothesis by Functional Analyses

A. Herrel, L. Spithoven, R. Van Damme and F. De Vree
Functional Ecology
Vol. 13, No. 3 (Jun., 1999), pp. 289-297
Stable URL: http://www.jstor.org/stable/2656440
Page Count: 9
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Sexual Dimorphism of Head Size in Gallotia galloti: Testing the Niche Divergence Hypothesis by Functional Analyses
Preview not available

Abstract

1. Two often cited hypotheses explaining sexual head size dimorphism in lizards are: sexual selection acting on structures important in intrasexual competition, and reduction of intersexual competition through food niche separation. 2. In this study some implicit assumptions of the latter hypothesis were tested, namely that an increase in gape distance and bite force should accompany the observed increase in head size. These assumptions are tested by recording bite forces, in vivo, for lizards of the species Gallotia galloti. In this species, male lizards have significantly larger heads than female conspecifics of similar snout-vent length. 3. Additionally, the average force needed to crush several potential prey species was determined experimentally and compared with the bite force data. This comparison clearly illustrates that animals of both sexes can bite much harder than required for most insect food items, which does not support the niche divergence hypothesis. The apparent `excess' bite force in both sexes might be related to the partially herbivorous diet of the animals. 4. To unravel the origin of differences between sexes in bite capacity, the crushing phase of biting was modelled. The results of this model show different strategies in allocation of muscle tissue between both sexes. The origin of this difference is discussed and a possible evolutionary pathway of the development of the sexual dimorphism in the species is provided.

Page Thumbnails

  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297