Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Isozyme Diversity in Iris cristata and the Threatened Glacial Endemic I. lacustris (Iridaceae)

Gary L. Hannan and Michael W. Orick
American Journal of Botany
Vol. 87, No. 3 (Mar., 2000), pp. 293-301
Stable URL: http://www.jstor.org/stable/2656625
Page Count: 9
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Isozyme Diversity in Iris cristata and the Threatened Glacial Endemic I. lacustris (Iridaceae)
Preview not available

Abstract

Iris cristata and I. lacustris differ markedly in geographic distribution, glacial history of current ranges, and ecology. We hypothesized that I. cristata, a widespread species of unglaciated regions of eastern North America, would exhibit genetic diversity typical of other widespread plant species, whereas the threatened I. lacustris, which occupies glaciated habitats on Great Lakes shorelines, would display little genetic variation. Iris lacustris lacked detectable polymorphisms in 18 isozyme loci, although we found evidence of possible incomplete gene silencing in four additional loci in some populations. In contrast, I. cristata was polymorphic at 73% of 15 loci examined, with an average of three alleles per locus. Genetic diversity (He) was 0.231. All species-level and population-level estimates of genetic diversity were higher than averages for plants having comparable life history traits. Nearly 98% of the total genetic diversity in I. cristata was apportioned within populations, and heterozygosity and fixation estimates suggest a high level of outcrossing in this species (t = 1.265). The long-lived perennial habit and high outcrossing rate in stable populations are proposed as factors contributing to high genetic diversity in I. cristata. The data are consistent with an hypothesis of a recent origin of I. lacustris from a very limited I. cristata gene pool exacerbated by repeated bottlenecks and founder effects as I. lacustris populations were displaced by lake-level changes over the past 11 000 yr.

Page Thumbnails

  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301