Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Effects of Local Density on Pollination and Reproduction in Delphinium nuttallianum and Aconitum columbianum (Ranunculaceae)

Maria Bosch and Nickolas M. Waser
American Journal of Botany
Vol. 86, No. 6 (Jun., 1999), pp. 871-879
Stable URL: http://www.jstor.org/stable/2656707
Page Count: 9
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Effects of Local Density on Pollination and Reproduction in Delphinium nuttallianum and Aconitum columbianum (Ranunculaceae)
Preview not available

Abstract

Plant populations vary in density both naturally and as a consequence of anthropogenic impacts. Density in turn can influence pollination by animals. For example, plants in dense populations might enjoy more frequent visitation if pollinators forage most efficiently in such populations. We explored effects of plant density on pollination and seed set in the larkspur Delphinium nuttallianum and monkshood Aconitum columbianum. At our site in the Colorado Rocky Mountains, flowers of D. nuttallianum are pollinated primarily by queen bumble bees, solitary bees, and hummingbirds, whereas those of A. columbianum are pollinated primarily by queen and worker bumble bees. We found that the quantity of pollination service to both species (pollinator visitation rate and pollen deposition) was at best weakly related to density. In contrast, seed set declined by approximately one-third in sparse populations relative to nearby dense populations. This decline may stem from the receipt of low-quality pollen, for example, inbred pollen. Alternatively, sparsity may indicate poor environmental conditions that lower seed set for reasons unrelated to pollination. Our results demonstrate the value of simultaneously exploring pollinator behavior, pollen receipt, and seed set in attempting to understand how the population context influences plant reproductive success.

Page Thumbnails

  • Thumbnail: Page 
871
    871
  • Thumbnail: Page 
872
    872
  • Thumbnail: Page 
873
    873
  • Thumbnail: Page 
874
    874
  • Thumbnail: Page 
875
    875
  • Thumbnail: Page 
876
    876
  • Thumbnail: Page 
877
    877
  • Thumbnail: Page 
878
    878
  • Thumbnail: Page 
879
    879