Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Long-Distance Seed Dispersal in Plant Populations

Michael L. Cain, Brook G. Milligan and Allan E. Strand
American Journal of Botany
Vol. 87, No. 9 (Sep., 2000), pp. 1217-1227
Stable URL: http://www.jstor.org/stable/2656714
Page Count: 11
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Long-Distance Seed Dispersal in Plant Populations
Preview not available

Abstract

Long-distance seed dispersal influences many key aspects of the biology of plants, including spread of invasive species, metapopulation dynamics, and diversity and dynamics in plant communities. However, because long-distance seed dispersal is inherently hard to measure, there are few data sets that characterize the tails of seed dispersal curves. This paper is structured around two lines of argument. First, we argue that long-distance seed dispersal is of critical importance and, hence, that we must collect better data from the tails of seed dispersal curves. To make the case for the importance of long-distance seed dispersal, we review existing data and models of long-distance seed dispersal, focusing on situations in which seeds that travel long distances have a critical impact (colonization of islands, Holocene migrations, response to global change, metapopulation biology). Second, we argue that genetic methods provide a broadly applicable way to monitor long-distance seed dispersal; to place this argument in context, we review genetic estimates of plant migration rates. At present, several promising genetic approaches for estimating long-distance seed dispersal are under active development, including assignment methods, likelihood methods, genealogical methods, and genealogical/demographic methods. We close the paper by discussing important but as yet largely unexplored areas for future research.

Page Thumbnails

  • Thumbnail: Page 
1217
    1217
  • Thumbnail: Page 
1218
    1218
  • Thumbnail: Page 
1219
    1219
  • Thumbnail: Page 
1220
    1220
  • Thumbnail: Page 
1221
    1221
  • Thumbnail: Page 
1222
    1222
  • Thumbnail: Page 
1223
    1223
  • Thumbnail: Page 
1224
    1224
  • Thumbnail: Page 
1225
    1225
  • Thumbnail: Page 
1226
    1226
  • Thumbnail: Page 
1227
    1227