Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Microsatellite Variation in Cassava (Manihot esculenta, Euphorbiaceae) and Its Wild Relatives: Further Evidence for a Southern Amazonian Origin of Domestication

Kenneth M. Olsen and Barbara A. Schaal
American Journal of Botany
Vol. 88, No. 1 (Jan., 2001), pp. 131-142
Stable URL: http://www.jstor.org/stable/2657133
Page Count: 12
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Microsatellite Variation in Cassava (Manihot esculenta, Euphorbiaceae) and Its Wild Relatives: Further Evidence for a Southern Amazonian Origin of Domestication
Preview not available

Abstract

Genetic variation at five microsatellite loci was used to investigate the evolutionary and geographical origins of cassava (Manihot esculenta subsp. esculenta) and the population structure of cassava's wild relatives. Two hundred and twelve individuals were sampled, representing 20 crop accessions, 27 populations of cassava's closest wild relative (M. esculenta subsp. flabellifolia), and six populations of a potentially hybridizing species (M. pruinosa). Seventy-three alleles were observed across all loci and populations. These data indicate the following on cassava's origin: (1) genetic variation in the crop is a subset of that found in the wild M. esculenta subspecies, suggesting that cassava is derived solely from its conspecific wild relative. (2) Phenetic analyses group cassava with wild populations from the southern border of the Amazon basin, indicating this region as the likely site of domestication. (3) Manihot pruinosa, while closely related to M. esculenta (and possibly hybridizing with it where sympatric), is probably not a progenitor of the crop. Genetic differentiation among the wild populations is moderately high (FST = 0.42, ρST = 0.54). This differentiation has probably arisen primarily through random genetic drift (rather than mutation) following recent population divergence.

Page Thumbnails

  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138
  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
140
    140
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142