Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Discrete Orthogonal Polynomial Ensembles and the Plancherel Measure

Kurt Johansson
Annals of Mathematics
Second Series, Vol. 153, No. 1 (Jan., 2001), pp. 259-296
Published by: Annals of Mathematics
DOI: 10.2307/2661375
Stable URL: http://www.jstor.org/stable/2661375
Page Count: 38
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Discrete Orthogonal Polynomial Ensembles and the Plancherel Measure
Preview not available

Abstract

We consider discrete orthogonal polynomial ensembles which are discrete analogues of the orthogonal polynomial ensembles in random matrix theory. These ensembles occur in certain problems in combinatorial probability and can be thought of as probability measures on partitions. The Meixner ensemble is related to a two-dimensional directed growth model, and the Charlier ensemble is related to the lengths of weakly increasing subsequences in random words. The Krawtchouk ensemble occurs in connection with zig-zag paths in random domino tilings of the Aztec diamond, and also in a certain simplified directed first-passage percolation model. We use the Charlier ensemble to investigate the asymptotics of weakly increasing subsequences in random words and to prove a conjecture of Tracy and Widom. As a limit of the Meixner ensemble or the Charlier ensemble we obtain the Plancherel measure on partitions, and using this we prove a conjecture of Baik, Deift and Johansson that under the Plancherel measure, the distribution of the lengths of the first k rows in the partition, appropriately scaled, converges to the asymptotic joint distribution for the k largest eigenvalues of a random matrix from the Gaussian Unitary Ensemble. In this problem a certain discrete kernel, which we call the discrete Bessel kernel, plays an important role.

Page Thumbnails

  • Thumbnail: Page 
[259]
    [259]
  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268
  • Thumbnail: Page 
269
    269
  • Thumbnail: Page 
270
    270
  • Thumbnail: Page 
271
    271
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283
  • Thumbnail: Page 
284
    284
  • Thumbnail: Page 
285
    285
  • Thumbnail: Page 
286
    286
  • Thumbnail: Page 
287
    287
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296