Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Variation in Dinosaur Skeletochronology Indicators: Implications for Age Assessment and Physiology

John R. Horner, Armand de Ricqlès and Kevin Padian
Paleobiology
Vol. 25, No. 3 (Summer, 1999), pp. 295-304
Published by: Paleontological Society
Stable URL: http://www.jstor.org/stable/2666000
Page Count: 10
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Variation in Dinosaur Skeletochronology Indicators: Implications for Age Assessment and Physiology
Preview not available

Abstract

Twelve different bones from the skeleton of the holotype specimen of the hadrosaurian dinosaur Hypacrosaurus stebingeri were thin-sectioned to evaluate the significance of lines of arrested growth (LAGs) in age assessments. The presence of an external fundamental system (EFS) at the external surface of the cortex and mature epiphyses indicate that the Hypacrosaurus specimen had reached adulthood and growth had slowed considerably from earlier stages. The number of LAGs varied from none in the pedal phalanx to as many as eight in the tibia and femur. Most elements had experienced considerable Haversian reconstruction that had most likely obliterated many LAGs. The tibia was found to have experienced the least amount of reconstruction, but was still not optimal for skeletochronology because the LAGs were difficult to count near the periosteal surface. Additionally, the numbers of LAGs within the EFS vary considerably around the circumference of a single element and among elements. Counting LAGs from a single bone to assess skeletochronology appears to be unreliable, particularly when a fundamental system exists. Because LAGs are plesiomorphic for tetrapods, and because they are present in over a dozen orders of mammals, they have no particular physiological meaning that can be generalized to particular amniote groups without independent physiological evidence. Descriptions of dinosaur physiology as "intermediate" between the physiology of living reptiles and that of living birds and mammals may or may not be valid, but cannot be based reliably on the presence of LAGs.

Page Thumbnails

  • Thumbnail: Page 
[295]
    [295]
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304