Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Broadcasting on Trees and the Ising Model

William Evans, Claire Kenyon, Yuval Peres and Leonard J. Schulman
The Annals of Applied Probability
Vol. 10, No. 2 (May, 2000), pp. 410-433
Stable URL: http://www.jstor.org/stable/2667156
Page Count: 24
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Broadcasting on Trees and the Ising Model
Preview not available

Abstract

Consider a process in which information is transmitted from a given root node on a noisy tree network T. We start with an unbiased random bit R at the root of the tree and send it down the edges of T. On every edge the bit can be reversed with probability ε, and these errors occur independently. The goal is to reconstruct R from the values which arrive at the nth level of the tree. This model has been studied in information theory, genetics and statistical mechanics. We bound the reconstruction probability from above, using the maximum flow on T viewed as a capacitated network, and from below using the electrical conductance of T. For general infinite trees, we establish a sharp threshold: the probability of correct reconstruction tends to 1/2 as n → ∞ if $(1 - 2\varepsilon)^2 < p_c(T)$, but the reconstruction probability stays bounded away from 1/2 if the opposite inequality holds. Here pc(T) is the critical probability for percolation on T; in particular pc(T) = 1/b for the b + 1-regular tree. The asymptotic reconstruction problem is equivalent to purity of the "free boundary" Gibbs state for the Ising model on a tree. The special case of regular trees was solved in 1995 by Bleher, Ruiz and Zagrebnov; our extension to general trees depends on a coupling argument and on a reconstruction algorithm that weights the input bits by the electrical current flow from the root to the leaves.

Page Thumbnails

  • Thumbnail: Page 
410
    410
  • Thumbnail: Page 
411
    411
  • Thumbnail: Page 
412
    412
  • Thumbnail: Page 
413
    413
  • Thumbnail: Page 
414
    414
  • Thumbnail: Page 
415
    415
  • Thumbnail: Page 
416
    416
  • Thumbnail: Page 
417
    417
  • Thumbnail: Page 
418
    418
  • Thumbnail: Page 
419
    419
  • Thumbnail: Page 
420
    420
  • Thumbnail: Page 
421
    421
  • Thumbnail: Page 
422
    422
  • Thumbnail: Page 
423
    423
  • Thumbnail: Page 
424
    424
  • Thumbnail: Page 
425
    425
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433