Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Identifying Regression Outliers and Mixtures Graphically

R. Dennis Cook and Frank Critchley
Journal of the American Statistical Association
Vol. 95, No. 451 (Sep., 2000), pp. 781-794
DOI: 10.2307/2669462
Stable URL: http://www.jstor.org/stable/2669462
Page Count: 14
  • Download ($14.00)
  • Cite this Item
Identifying Regression Outliers and Mixtures Graphically
Preview not available

Abstract

Regressions in practice can include outliers and other unknown subpopulation structures. For example, mixtures of regressions occur if there is an omitted categorical predictor, like gender or location, and different regressions occur within each category. The theory of regression graphics based on central subspaces can be used to construct graphical solutions to long-standing problems of this type. It is argued that in practice the central subspace automatically expands to incorporate outliers and regression mixtures. Thus methods of estimating the central subspace can be used to identify these phenomena, without specifying a model. Examples illustrating the power of the theory are presented.

Page Thumbnails

  • Thumbnail: Page 
781
    781
  • Thumbnail: Page 
782
    782
  • Thumbnail: Page 
783
    783
  • Thumbnail: Page 
784
    784
  • Thumbnail: Page 
785
    785
  • Thumbnail: Page 
786
    786
  • Thumbnail: Page 
787
    787
  • Thumbnail: Page 
788
    788
  • Thumbnail: Page 
789
    789
  • Thumbnail: Page 
790
    790
  • Thumbnail: Page 
791
    791
  • Thumbnail: Page 
792
    792
  • Thumbnail: Page 
793
    793
  • Thumbnail: Page 
794
    794