Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Statistical Properties and Uses of the Wavelet Variance Estimator for the Scale Analysis of Time Series

A. Serroukh, A. T. Walden and D. B. Percival
Journal of the American Statistical Association
Vol. 95, No. 449 (Mar., 2000), pp. 184-196
DOI: 10.2307/2669537
Stable URL: http://www.jstor.org/stable/2669537
Page Count: 13
  • Download ($14.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Statistical Properties and Uses of the Wavelet Variance Estimator for the Scale Analysis of Time Series
Preview not available

Abstract

Many physical processes are an amalgam of components operating on different scales, and scientific questions about observed data are often inherently linked to understanding the behavior at different scales. We explore time-scale properties of time series through the variance at different scales derived using wavelet methods. The great advantage of wavelet methods over ad hoc modifications of existing techniques is that wavelets provide exact scale-based decomposition results. We consider processes that are stationary, nonstationary but with stationary dth order differences, and nonstationary but with local stationarity. We study an estimator of the wavelet variance based on the maximal-overlap (undecimated) discrete wavelet transform. The asymptotic distribution of this wavelet variance estimator is derived for a wide class of stochastic processes, not necessarily Gaussian or linear. The variance of this distribution is estimated using spectral methods. Simulations confirm the theoretical results. The utility of the methodology is demonstrated on two scientifically important series, the surface albedo of pack ice (a strongly non-Gaussian series) and ocean shear data (a nonstationary series).

Page Thumbnails

  • Thumbnail: Page 
184
    184
  • Thumbnail: Page 
185
    185
  • Thumbnail: Page 
186
    186
  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188
  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191
  • Thumbnail: Page 
192
    192
  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195
  • Thumbnail: Page 
196
    196