Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

Journal Article

Ice Break-Up on Southern Lake Baikal and Its Relationship to Local and Regional Air Temperatures in Siberia and to the North Atlantic Oscillation

David M. Livingstone
Limnology and Oceanography
Vol. 44, No. 6 (Sep., 1999), pp. 1486-1497
Stable URL: http://www.jstor.org/stable/2670731
Page Count: 12
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • More info
  • Add to My Lists
  • Cite this Item
Ice Break-Up on Southern Lake Baikal and Its Relationship to Local and Regional Air Temperatures in Siberia and to the North Atlantic Oscillation
Preview not available

Abstract

The calendar date of ice break-up on southern Lake Baikal has been recorded uninterruptedly since 1869. A strong trend to earlier thawing up to around 1920 (1 d per 3.3 yr) is followed by the lack of any significant trend thereafter. For the period 1931-1994, the timing of break-up is related to local surface air temperatures integrated over periods of 1-3 months. Although highest unimodal correlations are with the 3-month mean air temperature, a bimodal relationship between break-up and air temperature exists at shorter integration times, with break-up date being related not only to the air temperature prevailing during thawing (April) but also to that prevailing during the time of ice formation, when air temperatures are lowest (February). High-frequency (interannual) fluctuations in the timing of break-up appear to be influenced mainly by the air temperatures prevailing during thawing, and low-frequency (interdecadal) fluctuations by those prevailing during ice formation. Whereas correlations with April air temperatures are always significant, those with February air temperatures are only significant during the latter part of this century, i.e., after cessation of the tendency toward earlier thawing. The high correlation between break-up date and integrated air temperature is not merely local but extends over most of Siberia and parts of northern China. Because air temperatures in Siberia contain a strong winter NAO (North Atlantic Oscillation) signal, so does the Lake Baikal break-up date, with up to 14% of the variance in the observed date of break-up being explained by the seasonal NAO index from January to March. As in the case of the air temperature data, a significant NAO signal in the break-up date can be detected only during the latter part of this century, implying that the influence of the NAO on the thawing of Lake Baikal during the early part of this century was probably negligible.

Page Thumbnails

  • Thumbnail: Page 
1486
    1486
  • Thumbnail: Page 
1487
    1487
  • Thumbnail: Page 
1488
    1488
  • Thumbnail: Page 
1489
    1489
  • Thumbnail: Page 
1490
    1490
  • Thumbnail: Page 
1491
    1491
  • Thumbnail: Page 
1492
    1492
  • Thumbnail: Page 
1493
    1493
  • Thumbnail: Page 
1494
    1494
  • Thumbnail: Page 
1495
    1495
  • Thumbnail: Page 
1496
    1496
  • Thumbnail: Page 
1497
    1497
Part of Sustainability