Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Mutualism as a Constraint on Invasion Success for Legumes and Rhizobia

Matthew A. Parker
Diversity and Distributions
Vol. 7, No. 3 (May, 2001), pp. 125-136
Published by: Wiley
Stable URL: http://www.jstor.org/stable/2673345
Page Count: 12
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Mutualism as a Constraint on Invasion Success for Legumes and Rhizobia
Preview not available

Abstract

Because hereditary symbiont transmission is normally absent in the mutualism of legume plants and root-nodule bacteria (rhizobia), dispersing plants may often arrive at new habitats where mutualist partners are too rare to provide full benefits. Factors governing invasion success were explored by analysing a system of two coupled pairwise competition models: a legume invader competing with a resident non-mutualistic plant, and a rhizobial population competing with a resident population of nonsymbiotic bacteria. The non-linear dependence of benefits on partner abundance in this mutualism creates the possibility of two alternative population size equilibria, so that a threshold density can exist for invasion. If legumes and rhizobia exceed a critical population size, both species achieve rapid population growth, while if initial densities of both species are below their respective thresholds, they remain rare and are thus vulnerable to extinction in the presence of competitors. Overall, the results indicate that legumes may often fail at colonization attempts within habitats where mutualist partners are scarce. Data on legume prevalence in island floras and rates of geographical spread by legume weeds are consistent with this inference. Predictive insights about invasiveness may emerge from comparative research on key traits identified by the model, especially the shape of the function determining the number of nodules formed at low rhizobial density.

Page Thumbnails

  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136