Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Medical Image Compression and Vector Quantization

Sharon M. Perlmutter, Pamela C. Cosman, Chien-Wen Tseng, Richard A. Olshen, Robert M. Gray, King C. P. Li and Colleen J. Bergin
Statistical Science
Vol. 13, No. 1 (Feb., 1998), pp. 30-53
Stable URL: http://www.jstor.org/stable/2676715
Page Count: 24
  • Read Online (Free)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Medical Image Compression and Vector Quantization
Preview not available

Abstract

In this paper, we describe a particular set of algorithms for clustering and show how they lead to codes which can be used to compress images. The approach is called tree-structured vector quantization (TSVQ) and amounts to a binary tree-structured two-means clustering, very much in the spirit of CART. This coding is thereafter put into the larger framework of information theory. Finally, we report the methodology for how image compression was applied in a clinical setting, where the medical issue was the measurement of major blood vessels in the chest and the technology was magnetic resonance (MR) imaging. Measuring the sizes of blood vessels, of other organs and of tumors is fundamental to evaluating aneurysms, especially prior to surgery. We argue for digital approaches to imaging in general, two benefits being improved archiving and transmission, and another improved clinical usefulness through the application of digital image processing. These goals seem particularly appropriate for technologies like MR that are inherently digital. However, even in this modern age, archiving the images of a busy radiological service is not possible without substantially compressing them. This means that the codes by which images are stored digitally, whether they arise from TSVQ or not, need to be "lossy," that is, not invertible. Since lossy coding necessarily entails the loss of digital information, it behooves those who recommend it to demonstrate that the quality of medicine practiced is not diminished thereby. There is a growing literature concerning the impact of lossy compression upon tasks that involve detection. However, we are not aware of similar studies of measurement. We feel that the study reported here of 30 scans compressed to 5 different levels, with measurements being made by 3 accomplished radiologists, is consistent with 16:1 lossy compression as we practice it being acceptable for the problem at hand.

Page Thumbnails

  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32
  • Thumbnail: Page 
33
    33
  • Thumbnail: Page 
34
    34
  • Thumbnail: Page 
35
    35
  • Thumbnail: Page 
36
    36
  • Thumbnail: Page 
37
    37
  • Thumbnail: Page 
38
    38
  • Thumbnail: Page 
39
    39
  • Thumbnail: Page 
40
    40
  • Thumbnail: Page 
41
    41
  • Thumbnail: Page 
42
    42
  • Thumbnail: Page 
43
    43
  • Thumbnail: Page 
44
    44
  • Thumbnail: Page 
45
    45
  • Thumbnail: Page 
46
    46
  • Thumbnail: Page 
47
    47
  • Thumbnail: Page 
48
    48
  • Thumbnail: Page 
49
    49
  • Thumbnail: Page 
50
    50
  • Thumbnail: Page 
51
    51
  • Thumbnail: Page 
52
    52
  • Thumbnail: Page 
53
    53