Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Fitting Multivariate Models to Community Data: A Comment on Distance-Based Redundancy Analysis

Brian H. McArdle and Marti J. Anderson
Ecology
Vol. 82, No. 1 (Jan., 2001), pp. 290-297
Published by: Wiley
DOI: 10.2307/2680104
Stable URL: http://www.jstor.org/stable/2680104
Page Count: 8
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Fitting Multivariate Models to Community Data: A Comment on Distance-Based Redundancy Analysis
Preview not available

Abstract

Nonparametric multivariate analysis of ecological data using permutation tests has two main challenges: (1) to partition the variability in the data according to a complex design or model, as is often required in ecological experiments, and (2) to base the analysis on a multivariate distance measure (such as the semimetric Bray-Curtis measure) that is reasonable for ecological data sets. Previous nonparametric methods have succeeded in one or other of these areas, but not in both. A recent contribution to Ecological Monographs by Legendre and Anderson, called distance-based redundancy analysis (db-RDA), does achieve both. It does this by calculating principal coordinates and subsequently correcting for negative eigenvalues, if they are present, by adding a constant to squared distances. We show here that such a correction is not necessary. Partitioning can be achieved directly from the distance matrix itself, with no corrections and no eigenanalysis, even if the distance measure used is semimetric. An ecological example is given to show the differences in these statistical methods. Empirical simulations, based on parameters estimated from real ecological species abundance data, showed that db-RDA done on multi-factorial designs (using the correction) does not have type 1 error consistent with the significance level chosen for the analysis (i.e., does not provide an exact test), whereas the direct method described and advocated here does.

Page Thumbnails

  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297