Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Limitations to Symbiotic Nitrogen Fixation in Primary Succession on the Tanana River Floodplain

Daniel D. Uliassi and Roger W. Ruess
Ecology
Vol. 83, No. 1 (Jan., 2002), pp. 88-103
Published by: Wiley
DOI: 10.2307/2680123
Stable URL: http://www.jstor.org/stable/2680123
Page Count: 16
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Limitations to Symbiotic Nitrogen Fixation in Primary Succession on the Tanana River Floodplain
Preview not available

Abstract

Constraints on nitrogen fixation are the ultimate causes of N limitation of primary production, but hypotheses concerning limitations to N2 fixation remain largely untested in natural terrestrial ecosystems. We examined limitations to N2 fixation by thinleaf alder (Alnus tenuifolia) in two stages of primary forest succession on the Tanana River floodplain (interior Alaska, USA) and focused on the hypothesis that N2 fixation was limited by low soil P availability. Paired control and P fertilized plots were established at four replicate early successional alder stands and four later successional poplar (Populus balsamifera) stands (dense alder understories with mature poplar overstories) and N2 fixation was estimated with an acetylene reduction assay. In alder stands, P fertilization increased total nodule dry biomass and increased total ecosystem N inputs, but it had little effect on nitrogenase activity per unit nodule dry mass (specific acetylene reduction activity, ARA). Specific ARA increased only in late July when soil temperature and ARA were at their maximum values. In contrast, fertilization had no effect on these measures in poplar stands where reduced soil moisture may have superseded limitation by P. We detected no differences in specific ARA, total nodule biomass, or N inputs, between alder and poplar stands but all of these measures were highly variable. Leaf area of the alder canopy emerged as the best predictor of ecosystem inputs of fixed N among control plots. Alders resorbed high amounts of P but little N (consistent with low P availability and a high P demand and a high N availability in alder), and P fertilization reduced P resorption but had no effect on N resorption. The timing of N2 fixation and N resorption indicate that late-season increases in leaf N, following a midseason reduction in leaf N, were driven by N2 fixation in excess of plant N demands as nodules continued fixing N while alder leaves senesced. These results have shown that P limits N2 fixation in alder stands in this nitrogen-limited sere, but that factors limiting N2 fixation can change over short successional time scales.

Page Thumbnails

  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91
  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
96
    96
  • Thumbnail: Page 
97
    97
  • Thumbnail: Page 
98
    98
  • Thumbnail: Page 
99
    99
  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103