Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

A Diagnostic for Selecting the Threshold in Extreme Value Analysis

Armelle Guillou and Peter Hall
Journal of the Royal Statistical Society. Series B (Statistical Methodology)
Vol. 63, No. 2 (2001), pp. 293-305
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2680600
Page Count: 13
Were these topics helpful?
See something inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Diagnostic for Selecting the Threshold in Extreme Value Analysis
Preview not available

Abstract

A new approach is suggested for choosing the threshold when fitting the Hill estimator of a tail exponent to extreme value data. Our method is based on an easily computed diagnostic, which in turn is founded directly on the Hill estimator itself, 'symmetrized' to remove the effect of the tail exponent but designed to emphasize biases in estimates of that exponent. The attractions of the method are its accuracy, its simplicity and the generality with which it applies. This generality implies that the technique has somewhat different goals from more conventional approaches, which are designed to accommodate the minor component of a postulated two-component Pareto mixture. Our approach does not rely on the second component being Pareto distributed. Nevertheless, in the conventional setting it performs competitively with recently proposed methods, and in more general cases it achieves optimal rates of convergence. A by-product of our development is a very simple and practicable exponential approximation to the distribution of the Hill estimator under departures from the Pareto distribution.

Page Thumbnails

  • Thumbnail: Page 
[293]
    [293]
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305