Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Inference in Molecular Population Genetics

Matthew Stephens and Peter Donnelly
Journal of the Royal Statistical Society. Series B (Statistical Methodology)
Vol. 62, No. 4 (2000), pp. 605-655
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2680611
Page Count: 51
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Inference in Molecular Population Genetics
Preview not available

Abstract

Full likelihood-based inference for modern population genetics data presents methodological and computational challenges. The problem is of considerable practical importance and has attracted recent attention, with the development of algorithms based on importance sampling (IS) and Markov chain Monte Carlo (MCMC) sampling. Here we introduce a new IS algorithm. The optimal proposal distribution for these problems can be characterized, and we exploit a detailed analysis of genealogical processes to develop a practicable approximation to it. We compare the new method with existing algorithms on a variety of genetic examples. Our approach substantially outperforms existing IS algorithms, with efficiency typically improved by several orders of magnitude. The new method also compares favourably with existing MCMC methods in some problems, and less favourably in others, suggesting that both IS and MCMC methods have a continuing role to play in this area. We offer insights into the relative advantages of each approach, and we discuss diagnostics in the IS framework.

Page Thumbnails

  • Thumbnail: Page 
[605]
    [605]
  • Thumbnail: Page 
606
    606
  • Thumbnail: Page 
607
    607
  • Thumbnail: Page 
608
    608
  • Thumbnail: Page 
609
    609
  • Thumbnail: Page 
610
    610
  • Thumbnail: Page 
611
    611
  • Thumbnail: Page 
612
    612
  • Thumbnail: Page 
613
    613
  • Thumbnail: Page 
614
    614
  • Thumbnail: Page 
615
    615
  • Thumbnail: Page 
616
    616
  • Thumbnail: Page 
617
    617
  • Thumbnail: Page 
618
    618
  • Thumbnail: Page 
619
    619
  • Thumbnail: Page 
620
    620
  • Thumbnail: Page 
621
    621
  • Thumbnail: Page 
622
    622
  • Thumbnail: Page 
623
    623
  • Thumbnail: Page 
624
    624
  • Thumbnail: Page 
625
    625
  • Thumbnail: Page 
626
    626
  • Thumbnail: Page 
627
    627
  • Thumbnail: Page 
628
    628
  • Thumbnail: Page 
629
    629
  • Thumbnail: Page 
630
    630
  • Thumbnail: Page 
631
    631
  • Thumbnail: Page 
632
    632
  • Thumbnail: Page 
633
    633
  • Thumbnail: Page 
634
    634
  • Thumbnail: Page 
635
    635
  • Thumbnail: Page 
636
    636
  • Thumbnail: Page 
637
    637
  • Thumbnail: Page 
638
    638
  • Thumbnail: Page 
639
    639
  • Thumbnail: Page 
640
    640
  • Thumbnail: Page 
641
    641
  • Thumbnail: Page 
642
    642
  • Thumbnail: Page 
643
    643
  • Thumbnail: Page 
644
    644
  • Thumbnail: Page 
645
    645
  • Thumbnail: Page 
646
    646
  • Thumbnail: Page 
647
    647
  • Thumbnail: Page 
648
    648
  • Thumbnail: Page 
649
    649
  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
651
    651
  • Thumbnail: Page 
652
    652
  • Thumbnail: Page 
653
    653
  • Thumbnail: Page 
654
    654
  • Thumbnail: Page 
655
    655