Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Maximum Entropy Sampling and Optimal Bayesian Experimental Design

Paola Sebastiani and Henry P. Wynn
Journal of the Royal Statistical Society. Series B (Statistical Methodology)
Vol. 62, No. 1 (2000), pp. 145-157
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2680683
Page Count: 13
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Maximum Entropy Sampling and Optimal Bayesian Experimental Design
Preview not available

Abstract

When Shannon entropy is used as a criterion in the optimal design of experiments, advantage can be taken of the classical identity representing the joint entropy of parameters and observations as the sum of the marginal entropy of the observations and the preposterior conditional entropy of the parameters. Following previous work in which this idea was used in spatial sampling, the method is applied to standard parameterized Bayesian optimal experimental design. Under suitable conditions, which include non-linear as well as linear regression models, it is shown in a few steps that maximizing the marginal entropy of the sample is equivalent to minimizing the pre-posterior entropy, the usual Bayesian criterion, thus avoiding the use of conditional distributions. It is shown using this marginal formulation that under normality assumptions every standard model which has a two-point prior distribution on the parameters gives an optimal design supported on a single point. Other results include a new asymptotic formula which applies as the error variance is large and bounds on support size.

Page Thumbnails

  • Thumbnail: Page 
[145]
    [145]
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157