Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Designing and Integrating Composite Networks for Monitoring Multivariate Gaussian Pollution Fields

James V. Zidek, Weimin Sun and Nhu D. Le
Journal of the Royal Statistical Society. Series C (Applied Statistics)
Vol. 49, No. 1 (2000), pp. 63-79
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2680861
Page Count: 17
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Designing and Integrating Composite Networks for Monitoring Multivariate Gaussian Pollution Fields
Preview not available

Abstract

Networks of ambient monitoring stations are used to monitor environmental pollution fields such as those for acid rain and air pollution. Such stations provide regular measurements of pollutant concentrations. The networks are established for a variety of purposes at various times so often several stations measuring different subsets of pollutant concentrations can be found in compact geographical regions. The problem of statistically combining these disparate information sources into a single `network' then arises. Capitalizing on the efficiencies so achieved can then lead to the secondary problem of extending this network. The subject of this paper is a set of 31 air pollution monitoring stations in southern Ontario. Each of these regularly measures a particular subset of ionic sulphate, sulphite, nitrite and ozone. However, this subset varies from station to station. For example only two stations measure all four. Some measure just one. We describe a Bayesian framework for integrating the measurements of these stations to yield a spatial predictive distribution for unmonitored sites and unmeasured concentrations at existing stations. Furthermore we show how this network can be extended by using an entropy maximization criterion. The methods assume that the multivariate response field being measured has a joint Gaussian distribution conditional on its mean and covariance function. A conjugate prior is used for these parameters, some of its hyperparameters being fitted empirically.

Page Thumbnails

  • Thumbnail: Page 
[63]
    [63]
  • Thumbnail: Page 
64
    64
  • Thumbnail: Page 
65
    65
  • Thumbnail: Page 
66
    66
  • Thumbnail: Page 
67
    67
  • Thumbnail: Page 
68
    68
  • Thumbnail: Page 
69
    69
  • Thumbnail: Page 
70
    70
  • Thumbnail: Page 
71
    71
  • Thumbnail: Page 
72
    72
  • Thumbnail: Page 
73
    73
  • Thumbnail: Page 
74
    74
  • Thumbnail: Page 
75
    75
  • Thumbnail: Page 
76
    76
  • Thumbnail: Page 
77
    77
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79