If you need an accessible version of this item please contact JSTOR User Support

Thirteen Ways to Look at the Correlation Coefficient

Joseph Lee Rodgers and W. Alan Nicewander
The American Statistician
Vol. 42, No. 1 (Feb., 1988), pp. 59-66
DOI: 10.2307/2685263
Stable URL: http://www.jstor.org/stable/2685263
Page Count: 8
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Thirteen Ways to Look at the Correlation Coefficient
Preview not available

Abstract

In 1885, Sir Francis Galton first defined the term "regression" and completed the theory of bivariate correlation. A decade later, Karl Pearson developed the index that we still use to measure correlation, Pearson's r. Our article is written in recognition of the 100th anniversary of Galton's first discussion of regression and correlation. We begin with a brief history. Then we present 13 different formulas, each of which represents a different computational and conceptual definition of r. Each formula suggests a different way of thinking about this index, from algebraic, geometric, and trigonometric settings. We show that Pearson's r (or simple functions of r) may variously be thought of as a special type of mean, a special type of variance, the ratio of two means, the ratio of two variances, the slope of a line, the cosine of an angle, and the tangent to an ellipse, and may be looked at from several other interesting perspectives.

Page Thumbnails

  • Thumbnail: Page 
59
    59
  • Thumbnail: Page 
60
    60
  • Thumbnail: Page 
61
    61
  • Thumbnail: Page 
62
    62
  • Thumbnail: Page 
63
    63
  • Thumbnail: Page 
64
    64
  • Thumbnail: Page 
65
    65
  • Thumbnail: Page 
66
    66