If you need an accessible version of this item please contact JSTOR User Support

Boundary and Entropy of Space Homogeneous Markov Chains

Vadim A. Kaimanovich and Wolfgang Woess
The Annals of Probability
Vol. 30, No. 1 (Jan., 2002), pp. 323-363
Stable URL: http://www.jstor.org/stable/2692012
Page Count: 41
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Boundary and Entropy of Space Homogeneous Markov Chains
Preview not available

Abstract

We study the Poisson boundary ($\equiv$ representation of bounded harmonic functions) of Markov operators on discrete state spaces that are invariant under the action of a transitive group of permutations. This automorphism group is locally compact, but not necessarily discrete or unimodular. The main technical tool is the entropy theory which we develop along the same lines as in the case of random walks on countable groups, while, however, the implementation is different and exploits discreteness of the state space on the one hand and the path space of the induced random walk on the nondiscrete group on the other. Various new examples are given as applications, including a description of the Poisson boundary for random walks on vertex-transitive graphs with infinitely many ends and on the Diestel-Leader graphs.

Page Thumbnails

  • Thumbnail: Page 
323
    323
  • Thumbnail: Page 
324
    324
  • Thumbnail: Page 
325
    325
  • Thumbnail: Page 
326
    326
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332
  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340
  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
345
    345
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347
  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349
  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356
  • Thumbnail: Page 
357
    357
  • Thumbnail: Page 
358
    358
  • Thumbnail: Page 
359
    359
  • Thumbnail: Page 
360
    360
  • Thumbnail: Page 
361
    361
  • Thumbnail: Page 
362
    362
  • Thumbnail: Page 
363
    363