Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Monoid Based Semantics for Linear Formulas

W. P. R. Mitchell and H. Simmons
The Journal of Symbolic Logic
Vol. 67, No. 2 (Jun., 2002), pp. 505-527
Stable URL: http://www.jstor.org/stable/2694935
Page Count: 23
  • Get Access
  • Read Online (Free)
  • Download ($10.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Monoid Based Semantics for Linear Formulas
Preview not available

Abstract

Each Girard quantale (i.e., commutative quantale with a selected dualizing element) provides a support for a semantics for linear propositional formulas (but not for linear derivations). Several constructions of Girard quantales are known. We give two more constructions, one using an arbitrary partially ordered monoid and one using a partially ordered group (both commutative). In both cases the semantics can be controlled be a relation between pairs of elements of the support and formulas. This gives us a neat way of handling duality.

Page Thumbnails

  • Thumbnail: Page 
505
    505
  • Thumbnail: Page 
506
    506
  • Thumbnail: Page 
507
    507
  • Thumbnail: Page 
508
    508
  • Thumbnail: Page 
509
    509
  • Thumbnail: Page 
510
    510
  • Thumbnail: Page 
511
    511
  • Thumbnail: Page 
512
    512
  • Thumbnail: Page 
513
    513
  • Thumbnail: Page 
514
    514
  • Thumbnail: Page 
515
    515
  • Thumbnail: Page 
516
    516
  • Thumbnail: Page 
517
    517
  • Thumbnail: Page 
518
    518
  • Thumbnail: Page 
519
    519
  • Thumbnail: Page 
520
    520
  • Thumbnail: Page 
521
    521
  • Thumbnail: Page 
522
    522
  • Thumbnail: Page 
523
    523
  • Thumbnail: Page 
524
    524
  • Thumbnail: Page 
525
    525
  • Thumbnail: Page 
526
    526
  • Thumbnail: Page 
527
    527