Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A New "Feasible" Arithmetic

Stephen Bellantoni and Martin Hofmann
The Journal of Symbolic Logic
Vol. 67, No. 1 (Mar., 2002), pp. 104-116
Stable URL: http://www.jstor.org/stable/2694998
Page Count: 13
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A New "Feasible" Arithmetic
Preview not available

Abstract

A classical quantified modal logic is used to define a "feasible" arithmetic A12 whose provably total functions are exactly the polynomial-time computable functions. Informally, one understands $\Box\alpha$ as "α is feasibly demonstrable". A12 differs from a system A2 that is as powerful as Peano Arithmetic only by the restriction of induction to ontic (i.e., $\Box$-free) formulas. Thus, A12 is defined without any reference to bounding terms, and admitting induction over formulas having arbitrarily many alternations of unbounded quantifiers. The system also uses only a very small set of initial functions. To obtain the characterization, one extends the Curry-Howard isomorphism to include modal operations. This leads to a realizability translation based on recent results in higher-type ramified recursion. The fact that induction formulas are not restricted in their logical complexity, allows one to use the Friedman A translation directly. The development also leads us to propose a new Frege rule, the "Modal Extension" rule: if $\vdash \alpha$ then $\vdash A \leftrightarrow \alpha$ a for new symbol A.

Page Thumbnails

  • Thumbnail: Page 
104
    104
  • Thumbnail: Page 
105
    105
  • Thumbnail: Page 
106
    106
  • Thumbnail: Page 
107
    107
  • Thumbnail: Page 
108
    108
  • Thumbnail: Page 
109
    109
  • Thumbnail: Page 
110
    110
  • Thumbnail: Page 
111
    111
  • Thumbnail: Page 
112
    112
  • Thumbnail: Page 
113
    113
  • Thumbnail: Page 
114
    114
  • Thumbnail: Page 
115
    115
  • Thumbnail: Page 
116
    116