Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Bayesian Model Selection in Social Research

Adrian E. Raftery
Sociological Methodology
Vol. 25 (1995), pp. 111-163
DOI: 10.2307/271063
Stable URL: http://www.jstor.org/stable/271063
Page Count: 53
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Bayesian Model Selection in Social Research
Preview not available

Abstract

It is argued that P-values and the tests based upon them give unsatisfactory results, especially in large samples. It is shown that, in regression, when there are many candidate independent variables, standard variable selection procedures can give very misleading results. Also, by selecting a single model, they ignore model uncertainty and so underestimate the uncertainty about quantities of interest. The Bayesian approach to hypothesis testing, model selection, and accounting for model uncertainty is presented. Implementing this is straightforward through the use of the simple and accurate BIC approximation, and it can be done using the output from standard software. Specific results are presented for most of the types of model commonly used in sociology. It is shown that this approach overcomes the difficulties with P-values and standard model selection procedures based on them. It also allows easy comparison of nonnested models, and permits the quantification of the evidence for a null hypothesis of interest, such as a convergence theory or a hypothesis about societal norms.

Page Thumbnails

  • Thumbnail: Page 
111
    111
  • Thumbnail: Page 
112
    112
  • Thumbnail: Page 
113
    113
  • Thumbnail: Page 
114
    114
  • Thumbnail: Page 
115
    115
  • Thumbnail: Page 
116
    116
  • Thumbnail: Page 
117
    117
  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123
  • Thumbnail: Page 
124
    124
  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138
  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
140
    140
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161
  • Thumbnail: Page 
162
    162
  • Thumbnail: Page 
163
    163