If you need an accessible version of this item please contact JSTOR User Support

On Kueker Simple Theories

Ziv Shami
The Journal of Symbolic Logic
Vol. 70, No. 1 (Mar., 2005), pp. 216-222
Stable URL: http://www.jstor.org/stable/27588354
Page Count: 7
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
On Kueker Simple Theories
Preview not available

Abstract

We show that a Kueker simple theory eliminates Ǝ∞ and densely interprets weakly minimal formulas. As part of the proof we generalize Hrushovski's dichotomy for almost complete formulas to simple theories. We conclude that in a unidimensional simple theory an almost-complete formula is either weakly minimal or trivially-almost-complete. We also observe that a small unidimensional simple theory is supersimple of finite SU-rank.

Page Thumbnails

  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219
  • Thumbnail: Page 
220
    220
  • Thumbnail: Page 
221
    221
  • Thumbnail: Page 
222
    222