Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

The Church-Rosser Property in Symmetric Combinatory Logic

Katalin Bombó
The Journal of Symbolic Logic
Vol. 70, No. 2 (Jun., 2005), pp. 536-556
Stable URL: http://www.jstor.org/stable/27588377
Page Count: 21
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
The Church-Rosser Property in Symmetric Combinatory Logic
Preview not available

Abstract

Symmetic combinatory logic with the symmetric analogue of a combinatorially complete base (in the form of symmetric λ-calculus) is known to lack the Church-Rosser property. We prove a much stronger theorem that no symmetric combinatory logic that contains at least two proper symmetric combinators has the Church-Rosser property. Although the statement of the result looks similar to an earlier one concerning dual combinatory logic, the proof is different because symmetric combinators may form redexes in both left and right associated terms. Perhaps surprisingly, we are also able to show that certain symmetric combinatory logics that include just one particular constant are not confluent. This result (beyond other differences) clearly sets apart symmetric combinatory logic from dual combinatory logic, since all dual combinatory systems with a single combinator or a single dual combinator are Church-Rosser. Lastly, we prove that a symmetric combinatory logic that contains the fixed point and the one-place identity combinator has the Church-Rosser property.

Page Thumbnails

  • Thumbnail: Page 
536
    536
  • Thumbnail: Page 
537
    537
  • Thumbnail: Page 
538
    538
  • Thumbnail: Page 
539
    539
  • Thumbnail: Page 
540
    540
  • Thumbnail: Page 
541
    541
  • Thumbnail: Page 
542
    542
  • Thumbnail: Page 
543
    543
  • Thumbnail: Page 
544
    544
  • Thumbnail: Page 
545
    545
  • Thumbnail: Page 
546
    546
  • Thumbnail: Page 
547
    547
  • Thumbnail: Page 
548
    548
  • Thumbnail: Page 
549
    549
  • Thumbnail: Page 
550
    550
  • Thumbnail: Page 
551
    551
  • Thumbnail: Page 
552
    552
  • Thumbnail: Page 
553
    553
  • Thumbnail: Page 
554
    554
  • Thumbnail: Page 
555
    555
  • Thumbnail: Page 
556
    556