Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Induction and Inductive Definitions in Fragments of Second Order Arithmetic

Klaus Aehlig
The Journal of Symbolic Logic
Vol. 70, No. 4 (Dec., 2005), pp. 1087-1107
Stable URL: http://www.jstor.org/stable/27588415
Page Count: 21
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Induction and Inductive Definitions in Fragments of Second Order Arithmetic
Preview not available

Abstract

A fragment with the same provably recursive functions as n iterated inductive definitions is obtained by restricting second order arithmetic in the following way. The underlying language allows only up to n + 1 nested second order quantifications and those are in such a way, that no second order variable occurs free in the scope of another second order quantifier. The amount of induction on arithmetical formulae only affects the arithmetical consequences of these theories, whereas adding induction for arbitrary formulae increases the strength by one inductive definition.

Page Thumbnails

  • Thumbnail: Page 
1087
    1087
  • Thumbnail: Page 
1088
    1088
  • Thumbnail: Page 
1089
    1089
  • Thumbnail: Page 
1090
    1090
  • Thumbnail: Page 
1091
    1091
  • Thumbnail: Page 
1092
    1092
  • Thumbnail: Page 
1093
    1093
  • Thumbnail: Page 
1094
    1094
  • Thumbnail: Page 
1095
    1095
  • Thumbnail: Page 
1096
    1096
  • Thumbnail: Page 
1097
    1097
  • Thumbnail: Page 
1098
    1098
  • Thumbnail: Page 
1099
    1099
  • Thumbnail: Page 
1100
    1100
  • Thumbnail: Page 
1101
    1101
  • Thumbnail: Page 
1102
    1102
  • Thumbnail: Page 
1103
    1103
  • Thumbnail: Page 
1104
    1104
  • Thumbnail: Page 
1105
    1105
  • Thumbnail: Page 
1106
    1106
  • Thumbnail: Page 
1107
    1107