Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Abstract Beth Definability in Institutions

Marius Petria and Răzvan Diaconescu
The Journal of Symbolic Logic
Vol. 71, No. 3 (Sep., 2006), pp. 1002-1028
Stable URL: http://www.jstor.org/stable/27588493
Page Count: 27
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Abstract Beth Definability in Institutions
Preview not available

Abstract

This paper studies definability within the theory of institutions, a version of abstract model theory that emerged in computing science studies of software specification and semantics. We generalise the concept of definability to arbitrary logics, formalised as institutions, and we develop three general definability results. One generalises the classical Beth theorem by relying on the interpolation properties of the institution. Another relies on a meta Birkhoff axiomatizability property of the institution and constitutes a source for many new actual definability results, including definability in (fragments of) classical model theory. The third one gives a set of sufficient conditions for 'borrowing' definability properties from another institution via an 'adequate' encoding between institutions. The power of our general definability results is illustrated with several applications to (many-sorted) classical model theory and partial algebra, leading for example to definability results for (quasi-)varieties of models or partial algebras. Many other applications are expected for the multitude of logical systems formalised as institutions from computing science and logic.

Page Thumbnails

  • Thumbnail: Page 
1002
    1002
  • Thumbnail: Page 
1003
    1003
  • Thumbnail: Page 
1004
    1004
  • Thumbnail: Page 
1005
    1005
  • Thumbnail: Page 
1006
    1006
  • Thumbnail: Page 
1007
    1007
  • Thumbnail: Page 
1008
    1008
  • Thumbnail: Page 
1009
    1009
  • Thumbnail: Page 
1010
    1010
  • Thumbnail: Page 
1011
    1011
  • Thumbnail: Page 
1012
    1012
  • Thumbnail: Page 
1013
    1013
  • Thumbnail: Page 
1014
    1014
  • Thumbnail: Page 
1015
    1015
  • Thumbnail: Page 
1016
    1016
  • Thumbnail: Page 
1017
    1017
  • Thumbnail: Page 
1018
    1018
  • Thumbnail: Page 
1019
    1019
  • Thumbnail: Page 
1020
    1020
  • Thumbnail: Page 
1021
    1021
  • Thumbnail: Page 
1022
    1022
  • Thumbnail: Page 
1023
    1023
  • Thumbnail: Page 
1024
    1024
  • Thumbnail: Page 
1025
    1025
  • Thumbnail: Page 
1026
    1026
  • Thumbnail: Page 
1027
    1027
  • Thumbnail: Page 
1028
    1028