Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Efficient Profile-Likelihood Confidence Intervals for Capture-Recapture Models

Olivier Gimenez, Rémi Choquet, Laurent Lamor, Paul Scofield, David Fletcher, Jean-Dominique Lebreton and Roger Pradel
Journal of Agricultural, Biological, and Environmental Statistics
Vol. 10, No. 2 (Jun., 2005), pp. 184-196
Stable URL: http://www.jstor.org/stable/27595554
Page Count: 13
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Efficient Profile-Likelihood Confidence Intervals for Capture-Recapture Models
Preview not available

Abstract

In a capture—recapture analysis, uncertainty in the parameter estimates is usually expressed by presenting classical Wald-type confidence intervals. This approach involves (1) the assumption that the maximum likelihood estimates are asymptotically normal and (2) numerical computation of the variance-covariance matrix of these estimates. When the sample size is small or when the estimates are on the boundary of their domain, a Wald confidence interval often performs badly. A natural alternative is to use profile-likelihood confidence intervals. In general, these intervals require a greater amount of computation. We propose a new implementation of this approach that is efficient, both in reducing the amount of computation and in coping with boundary estimates. We also show how profile-likelihood confidence intervals can be adjusted for overdispersion. Simulations were used to check whether nominal coverage levels were attained, and allowed us to compare this approach with the classical Wald procedure. We illustrate this work by considering a multi-state model for a sooty shearwater (Puffinus griseus) population.

Page Thumbnails

  • Thumbnail: Page 
184
    184
  • Thumbnail: Page 
185
    185
  • Thumbnail: Page 
186
    186
  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188
  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191
  • Thumbnail: Page 
192
    192
  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195
  • Thumbnail: Page 
196
    196