Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Multiple Hypothesis Testing and the Declining-Population Paradigm in Steller Sea lions

Nicholas Wolf and Marc Mangel
Ecological Applications
Vol. 18, No. 8 (Dec., 2008), pp. 1932-1955
Published by: Wiley
Stable URL: http://www.jstor.org/stable/27645913
Page Count: 24
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Multiple Hypothesis Testing and the Declining-Population Paradigm in Steller Sea lions
Preview not available

Abstract

We describe a novel spatially and temporally detailed approach for determining the cause or causes of a population decline, using the western Alaskan population of Steller sea lions (Eumetopias jubatus) as an example. Existing methods are mostly based on regression, which limits their utility when there are multiple hypotheses to consider and the data are sparse and noisy. Our likelihood-based approach is unbiased with regard to sample size, and its posterior probability landscape allows for the separate consideration of magnitude and certainty for multiple factors simultaneously. As applied to Steller sea lions, the approach uses a stochastic population model in which the vital rates (fecundity, pup survival, non-pup survival) at a particular rookery in each year are functions of one or more local conditions (total prey availability, species composition of available prey, fisheries activity, predation risk indices). Three vital rates and four scaling functions produce twelve nonexclusive hypotheses, of which we considered 10; we assumed a priori that fecundity would not be affected by fishery activities or predation. The likelihood of all the rookery- and year-specific census data was calculated by averaging across sample paths, using backward iteration and a beta-binomial structure for observation error. We computed the joint maximum likelihood estimates (MLE) of parameters associated with each hypothesis and constructed marginal likelihood curves to examine the support for each effect. We found strong support for a positive effect of total prey availability on pup recruitment, negative effects of prey species composition (pollock fraction) on fecundity and pup survival, and a positive effect of harbor seal density (our inverse proxy for predation risk) on non-pup survival. These results suggest a natural framework for adaptive management; for example, the areas around some of the rookeries could be designated as experimental zones where fishery quotas are contingent upon the results of prefishing season survey trawls. We contrast our results with those of previous studies, demonstrating the importance of testing multiple hypotheses simultaneously and quantitatively when investigating the causes of a population decline.

Page Thumbnails

  • Thumbnail: Page 
1932
    1932
  • Thumbnail: Page 
1933
    1933
  • Thumbnail: Page 
1934
    1934
  • Thumbnail: Page 
1935
    1935
  • Thumbnail: Page 
1936
    1936
  • Thumbnail: Page 
1937
    1937
  • Thumbnail: Page 
1938
    1938
  • Thumbnail: Page 
1939
    1939
  • Thumbnail: Page 
1940
    1940
  • Thumbnail: Page 
1941
    1941
  • Thumbnail: Page 
1942
    1942
  • Thumbnail: Page 
1943
    1943
  • Thumbnail: Page 
1944
    1944
  • Thumbnail: Page 
1945
    1945
  • Thumbnail: Page 
1946
    1946
  • Thumbnail: Page 
1947
    1947
  • Thumbnail: Page 
1948
    1948
  • Thumbnail: Page 
1949
    1949
  • Thumbnail: Page 
1950
    1950
  • Thumbnail: Page 
1951
    1951
  • Thumbnail: Page 
1952
    1952
  • Thumbnail: Page 
1953
    1953
  • Thumbnail: Page 
1954
    1954
  • Thumbnail: Page 
1955
    1955