Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Ecologically Relevant Dispersal of Corals on Isolated Reefs: Implications for Managing Resilience

Jim N. Underwood, Luke D. Smith, Madeleine J. H. Van Oppen and James P. Gilmour
Ecological Applications
Vol. 19, No. 1 (Jan., 2009), pp. 18-29
Published by: Wiley
Stable URL: http://www.jstor.org/stable/27645947
Page Count: 12
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Ecologically Relevant Dispersal of Corals on Isolated Reefs: Implications for Managing Resilience
Preview not available

Abstract

Coral reefs are in decline worldwide, and marine reserve networks have been advocated as a powerful management tool for maximizing the resilience of coral communities to an increasing variety, number, and severity of disturbances. However, the effective design of reserves must account for the spatial scales of larval dispersal that affect the demography of communities over ecological time frames. Ecologically relevant distances of dispersal were inferred from DNA microsatellite data in a broadcast-spawning (Acropora tenuis) and a brooding (Seriatopora hystrix) coral at isolated reef systems off northwest Australia. Congruent with expectations based on life histories, levels of genetic subdivision among populations were markedly higher in the brooder than in the broadcast spawner. Additionally, significant subdivision for both species between systems (>100 km), and between (>10 km) or within reefs (<10 km) within systems, indicated that many reefs or reef patches are demographically independent. There was also a clear distinction in the scale of genetic structure between the different systems; at the more geographically complex of the systems, a much finer scale structure was detected in both species. This suggested that the hydrodynamics associated with these complex reefs restrict distances regularly traveled by larvae. The primary implication is that short-term recovery of these coral communities after severe disturbance requires the input of larvae from viable communities kilometers to a few tens of kilometers away. Therefore, to be self-sustaining, we suggest that coral reef protected areas need to be large enough to encompass these routine dispersal distances. Further, to facilitate recovery from severe disturbances, protected areas need to be replicated over these spatial scales. However, specific designs also need to account for size, complexity, and isolation of reefs, which will either restrict or enhance dispersal within this range.

Page Thumbnails

  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29