Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Postfire Response of Flood-Regenerating Riparian Vegetation in a Semi-Arid Landscape

Neil E. Pettit and Robert J. Naiman
Ecology
Vol. 88, No. 8 (Aug., 2007), pp. 2094-2104
Published by: Wiley
Stable URL: http://www.jstor.org/stable/27651340
Page Count: 11
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Postfire Response of Flood-Regenerating Riparian Vegetation in a Semi-Arid Landscape
Preview not available

Abstract

Piles of large wood (LW) deposited by major floods in river corridors can interact with naturally occurring wildfires from uplands to impact the regeneration of riparian vegetation. This study examines the spatial and short-term temporal response of riparian vegetation and soil nutrients to fire along the Sabie River, South Africa, with special emphasis on the effects of burned LW piles. At the study site there were 112 species of plants recorded with 28% of species restricted to the burned plots. As expected, vegetation cover was significantly lower in burned plots as compared with the unburned plots 12 months postfire. There was a significant influence of LW on species richness with fewer species recorded in the LW plots. For both fire and LW treatments, plant cover showed a significant change over three years. After an initial increase from 12 to 24 months (postfire) there was a decline in plant cover after 36 months. Species community composition was distinctly different between burned and unburned plots 12 months postfire, and the presence of LW affected species composition for burned plots but not for unburned ones. Time series ordination of LW plots highlighted the changes in species composition over the three years of sampling. Of trees with accumulations of LW within 5 m of their base, 48% had been killed by fire as compared to only 4% with no LW accumulations in close proximity. Soil-available P was significantly higher in the burned plots and even higher with burned LW while there were no effects on soil total N. There was also a significant positive trend between available P in soils and plant vegetation cover. Soil-exchangeable K was also significantly higher and total C significantly lower in the burned and LW plots. Burned plots also had significantly higher soil electrical conductivity (EC) and soil pH. The patchy nature of the studied fire, whose complexity is exacerbated by the distribution of flood deposited LW, acted to create a mosaic of alternate successional states as the riparian community recovers from flooding and the subsequent fire. We suspect that the resultant heterogeneity will increase ecosystem resilience by providing flexibility in the form of more options for a system response to subsequent disturbances.

Page Thumbnails

  • Thumbnail: Page 
2094
    2094
  • Thumbnail: Page 
2095
    2095
  • Thumbnail: Page 
2096
    2096
  • Thumbnail: Page 
2097
    2097
  • Thumbnail: Page 
2098
    2098
  • Thumbnail: Page 
2099
    2099
  • Thumbnail: Page 
2100
    2100
  • Thumbnail: Page 
2101
    2101
  • Thumbnail: Page 
2102
    2102
  • Thumbnail: Page 
2103
    2103
  • Thumbnail: Page 
2104
    2104