Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Random Forests for Classification in Ecology

D. Richard Cutler, Thomas C. Edwards, Jr., Karen H. Beard, Adele Cutler, Kyle T. Hess, Jacob Gibson and Joshua J. Lawler
Ecology
Vol. 88, No. 11 (Nov., 2007), pp. 2783-2792
Published by: Wiley
Stable URL: http://www.jstor.org/stable/27651436
Page Count: 10
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Random Forests for Classification in Ecology
Preview not available

Abstract

Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature.

Page Thumbnails

  • Thumbnail: Page 
2783
    2783
  • Thumbnail: Page 
2784
    2784
  • Thumbnail: Page 
2785
    2785
  • Thumbnail: Page 
2786
    2786
  • Thumbnail: Page 
2787
    2787
  • Thumbnail: Page 
2788
    2788
  • Thumbnail: Page 
2789
    2789
  • Thumbnail: Page 
2790
    2790
  • Thumbnail: Page 
2791
    2791
  • Thumbnail: Page 
2792
    2792