Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Arsenic Inhibits Myogenic Differentiation and Muscle Regeneration

Yuan-Peng Yen, Keh-Sung Tsai, Ya-Wen Chen, Chun-Fa Huang, Rong-Sen Yang and Shing-Hwa Liu
Environmental Health Perspectives
Vol. 118, No. 7 (JULY 2010), pp. 949-956
Stable URL: http://www.jstor.org/stable/27822950
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Arsenic Inhibits Myogenic Differentiation and Muscle Regeneration
Preview not available

Abstract

Background: The incidence of low birth weights is increased in offspring of women who are exposed to high concentrations of arsenic in drinking water compared with other women. We hypothesized that effects of arsenic on birth weight may be related to effects on myogenic differentiation. Objective: We investigated the effects of arsenic trioxide (As2O3) on the myogenic differentiation of myoblasts in vitro and muscle regeneration in vivo. Methods: C2C12 myoblasts and primary mouse and human myoblasts were cultured in differentiation media with or without As2O3 (0.1–0.5 μM) for 4 days. Myogenic differentiation was assessed by myogenin and myosin heavy chain expression and multinucleated myotube formation in vitro; skeletal muscle regeneration was tested using an in vivo mouse model with experimental glycerol myopathy. Results: A submicromolar concentration of As2O3 dose-dependently inhibited myogenic differentiation without apparent effects on cell viability. As2O3 significantly and dose-dependently decreased phosphorylation of Akt and p70s6k proteins during myogenic differentiation. As2O3-induced inhibition in myotube formation and muscle-specific protein expression was reversed by transfection with the constitutively active form of Akt. Sections of soleus muscles stained with hematoxylin and eosin showed typical changes of injury and regeneration after local glycerol injection in mice. Regeneration of glycerol-injured soleus muscles, myogenin expression, and Akt phosphorylation were suppressed in muscles isolated from As2O3-treated mice compared with untreated mice. Conclusion: Our results suggest that As2O3 inhibits myogenic differentiation by inhibiting Akt-regulated signaling.

Page Thumbnails

  • Thumbnail: Page 
949
    949
  • Thumbnail: Page 
950
    950
  • Thumbnail: Page 
951
    951
  • Thumbnail: Page 
952
    952
  • Thumbnail: Page 
953
    953
  • Thumbnail: Page 
954
    954
  • Thumbnail: Page 
955
    955
  • Thumbnail: Page 
956
    956