Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Quantitative morphology and species delimitation under the general lineage concept: Optimization for Hedera (Araliaceae)

Virginia Valcárcel and Pablo Vargas
American Journal of Botany
Vol. 97, No. 9 (September 2010), pp. 1555-1573
Stable URL: http://www.jstor.org/stable/27857374
Page Count: 19
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Quantitative morphology and species delimitation under the general lineage concept: Optimization for Hedera (Araliaceae)
Preview not available

Abstract

Premise of the study: The use of continuous morphological characters in taxonomy is traditionally contingent on the existence of discrete diagnostic characters. When plant species are the result of recent divergence and gene flow and/or hybridization occur, the use of continuous morphological characters may help in species identification and delimitation. Between nine and 15 species have been recognized in the last treatments of Hedera. The recent divergence of the species and the involvement of allopolyploidization as the main force in this process may have greatly impeded the establishment of clear limits and contributed to multiple taxonomic proposals. Methods: A multivariate statistical decision-making procedure was applied to 56 quantative morphological characters and 602 specimens to identify and delimit Hedera species under the general lineage concept. Species' exclusive genetic ancestry was evaluated with the genealogical sorting index from the Bayesian inference trees of 30 Hedera ITS sequences. Key results: The decision-making procedure allowed recognizing 12 species and two groups (stellate and scale-like trichome groups) in Hedera and provided statistical support for making decisions about long-standing taxonomic controversies. Common ancestry was detected for the populations of three species even in the absence of the species monophyly. Conclusions: Quantitative variation supports discrete variation and provides statistical support for the taxa recognized in some recent proposals of Hedera. The need of explicit analysis of quantitative data are claimed to reduce taxonomic subjectivity and ease decision-making when qualitative data fail.

Page Thumbnails

  • Thumbnail: Page 
1555
    1555
  • Thumbnail: Page 
1556
    1556
  • Thumbnail: Page 
1557
    1557
  • Thumbnail: Page 
1558
    1558
  • Thumbnail: Page 
1559
    1559
  • Thumbnail: Page 
1560
    1560
  • Thumbnail: Page 
1561
    1561
  • Thumbnail: Page 
1562
    1562
  • Thumbnail: Page 
1563
    1563
  • Thumbnail: Page 
1564
    1564
  • Thumbnail: Page 
1565
    1565
  • Thumbnail: Page 
1566
    1566
  • Thumbnail: Page 
1567
    1567
  • Thumbnail: Page 
1568
    1568
  • Thumbnail: Page 
1569
    1569
  • Thumbnail: Page 
1570
    1570
  • Thumbnail: Page 
1571
    1571
  • Thumbnail: Page 
1572
    1572
  • Thumbnail: Page 
1573
    1573