Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Seasonal regulation of reproduction: altered role of melatonin under naturalistic conditions in hamsters

Matthew P. Butler, Kevin W. Turner, Jin Ho Park, Elanor E. Schoomer, Irving Zucker and Michael R. Gorman
Proceedings: Biological Sciences
Vol. 277, No. 1695 (22 September 2010), pp. 2867-2874
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/27862389
Page Count: 8
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Seasonal regulation of reproduction: altered role of melatonin under naturalistic conditions in hamsters
Preview not available

Abstract

The seasonal reproductive cycle of photoperiodic rodents is conceptualized as a series of discrete melatonin-dependent neuroendocrine transitions. Least understood is the springtime restoration of responsiveness to winter-like melatonin signals (breaking of refractoriness) that enables animals to once again respond appropriately to winter photoperiods the following year. This has been posited to require many weeks of long days based on studies employing static photoperiods instead of the annual pattern of continually changing photoperiods under which these mechanisms evolved. Maintaining Siberian hamsters under simulated natural photoperiods, we demonstrate that winter refractoriness is broken within six weeks after the spring equinox. We then test whether a history of natural photoperiod exposure can eliminate the requirement for long-day melatonin signalling. Hamsters pinealectomized at the spring equinox and challenged 10 weeks later with winter melatonin infusions exhibited gonadal regression, indicating that refractoriness was broken. A photostimulatory effect on body weight is first observed in the last four weeks of winter. Thus, the seasonal transition to the summer photosensitive phenotype is triggered prior to the equinox without exposure to long days and is thereafter melatonin-independent. Distinctions between photoperiodic and circannual seasonal organization erode with the incorporation in the laboratory of ecologically relevant day length conditions.

Page Thumbnails

  • Thumbnail: Page 
2867
    2867
  • Thumbnail: Page 
2868
    2868
  • Thumbnail: Page 
2869
    2869
  • Thumbnail: Page 
2870
    2870
  • Thumbnail: Page 
2871
    2871
  • Thumbnail: Page 
2872
    2872
  • Thumbnail: Page 
2873
    2873
  • Thumbnail: Page 
2874
    2874