Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

STOCHASTIC LOTKA–VOLTERRA POPULATION DYNAMICS WITH INFINITE DELAY

FUKE WU and YONG XU
SIAM Journal on Applied Mathematics
Vol. 70, No. 3 (2009), pp. 641-657
Stable URL: http://www.jstor.org/stable/27862524
Page Count: 17
  • Subscribe ($19.50)
  • Cite this Item
STOCHASTIC LOTKA–VOLTERRA POPULATION DYNAMICS WITH INFINITE DELAY
Preview not available

Abstract

We discover in this paper that when environmental noise is strongly dependent on the population size, this noise may suppress the population explosion in a finite time and guarantee the global positive solution. When the environmental noise is weakly dependent on the population size, the conditions that guarantee the global positive solution are independent of this environmental noise. We also discuss the pth moment boundedness, stochastic ultimate boundedness, and moment average boundedness in time under two classes of conditions. These properties are natural requirements from the biological point of view.

Page Thumbnails

  • Thumbnail: Page 
641
    641
  • Thumbnail: Page 
642
    642
  • Thumbnail: Page 
643
    643
  • Thumbnail: Page 
644
    644
  • Thumbnail: Page 
645
    645
  • Thumbnail: Page 
646
    646
  • Thumbnail: Page 
647
    647
  • Thumbnail: Page 
648
    648
  • Thumbnail: Page 
649
    649
  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
651
    651
  • Thumbnail: Page 
652
    652
  • Thumbnail: Page 
653
    653
  • Thumbnail: Page 
654
    654
  • Thumbnail: Page 
655
    655
  • Thumbnail: Page 
656
    656
  • Thumbnail: Page 
657
    657