If you need an accessible version of this item please contact JSTOR User Support

Menstruation as a Defense Against Pathogens Transported by Sperm

Margie Profet
The Quarterly Review of Biology
Vol. 68, No. 3 (Sep., 1993), pp. 335-386
Stable URL: http://www.jstor.org/stable/2831191
Page Count: 52
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Menstruation as a Defense Against Pathogens Transported by Sperm
Preview not available

Abstract

Sperm are vectors of disease. During mammalian insemination bacteria from the male and female genitalia regularly cling to sperm tails and are transported to the uterus. I propose that menstruation functions to protect the uterus and oviducts from colonization by pathogens. Menstrual blood exerts mechanical pressure on uterine tissue, forcing it to shed, and delivers large numbers of immune cells throughout the uterine cavity, directly combating pathogens. The mechanisms of menstruation show evidence of adaptive design. Spiral arteries that open to the lining of the uterus trigger menstruation by abruptly constricting, which deprives the local tissue of blood, and then abruptly dilating, which causes blood to force loose the necrotic tissue. Menstrual blood flows easily, unlike blood at most wound sites, because it lacks the normal level of clotting factors. Overt (externally visible) or covert (not externally visible) menstruation has been documented in many species of primate, including Old World monkeys and apes, New World monkeys, and prosimians, as well as in various species of bad and insectivore. The antipathogen hypothesis predicts that: (1) menstruation (overt or covert) is either universal or nearly so among mammalian species; (2) if the latter, then the existence of menstruation among species varies inversely with the probability of becoming pregnant per estrous cycle (menstruation would be especially adaptive in species with significantly less than 100% probability of becoming pregnant per estrous cycle); (3) among menstruating species, the average degree of menstrual bleeding for a given species is a function of the factors affecting menstruation's costs and benefits-in particular, the degree of bleeding is positively correlated with the average body size and sexually transmitted pathogen load of that species (profuse bleeding would be especially adaptive in large-bodied species with either promiscuous breeding systems or continuous sexual receptivity); and (4) other forms of normal uterine bleeding-proestrous, periovulatory, implantation, and postpartum-also have an antipathogen function. The hypothesis presented in this article has implications for the diagnosis, treatment and prevention of uterine infection and, therefore, for the prevention of pathogen-induced infertility. The uterus appears to be designed to increase its bleeding if it detects infection: Human uteri that become infected (or otherwise inflamed) bleed more profusely, bleed on more days per cycle, and often bleed intermittently throughout the cycle. Thus artificially curtailing infection-induced uterine bleeding may be contraindicated.

Page Thumbnails

  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340
  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
345
    345
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347
  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349
  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356
  • Thumbnail: Page 
357
    357
  • Thumbnail: Page 
358
    358
  • Thumbnail: Page 
359
    359
  • Thumbnail: Page 
360
    360
  • Thumbnail: Page 
361
    361
  • Thumbnail: Page 
362
    362
  • Thumbnail: Page 
363
    363
  • Thumbnail: Page 
364
    364
  • Thumbnail: Page 
365
    365
  • Thumbnail: Page 
366
    366
  • Thumbnail: Page 
367
    367
  • Thumbnail: Page 
368
    368
  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383
  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386