Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

Journal Article

Magma Flow Instability and Cyclic Activity at Soufriere Hills Volcano, Montserrat, British West Indies

B. Voight, R. S. J. Sparks, A. D. Miller, R. C. Stewart, R. P. Hoblitt, A. Clarke, J. Ewart, W. P. Aspinall, B. Baptie, E. S. Calder, P. Cole, T. H. Druitt, C. Hartford, R. A. Herd, P. Jackson, A. M. Lejeune, A. B. Lockhart, S. C. Loughlin, R. Luckett, L. Lynch, G. E. Norton, R. Robertson, I. M. Watson, R. Watts and S. R. Young
Science
New Series, Vol. 283, No. 5405 (Feb. 19, 1999), pp. 1138-1142
Stable URL: http://www.jstor.org/stable/2896747
Page Count: 5
Were these topics helpful?
See something inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • More info
  • Add to My Lists
  • Cite this Item
Magma Flow Instability and Cyclic Activity at Soufriere Hills Volcano, Montserrat, British West Indies
Preview not available

Abstract

Dome growth at the Soufriere Hills volcano (1996 to 1998) was frequently accompanied by repetitive cycles of earthquakes, ground deformation, degassing, and explosive eruptions. The cycles reflected unsteady conduit flow of volatile-charged magma resulting from gas exsolution, rheological stiffening, and pressurization. The cycles, over hours to days, initiated when degassed stiff magma retarded flow in the upper conduit. Conduit pressure built with gas exsolution, causing shallow seismicity and edifice inflation. Magma and gas were then expelled and the edifice deflated. The repeat time-scale is controlled by magma ascent rates, degassing, and microlite crystallization kinetics. Cyclic behavior allows short-term forecasting of timing, and of eruption style related to explosivity potential.

Page Thumbnails

  • Thumbnail: Page 
1138
    1138
  • Thumbnail: Page 
1139
    1139
  • Thumbnail: Page 
1140
    1140
  • Thumbnail: Page 
1141
    1141
  • Thumbnail: Page 
1142
    1142