Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Smoothed Maximum Score Estimator for the Binary Response Model

Joel L. Horowitz
Econometrica
Vol. 60, No. 3 (May, 1992), pp. 505-531
Published by: The Econometric Society
DOI: 10.2307/2951582
Stable URL: http://www.jstor.org/stable/2951582
Page Count: 27
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Smoothed Maximum Score Estimator for the Binary Response Model
Preview not available

Abstract

Manski (1985) has shown that the maximum score estimator of the coefficient vector of a binary response model is consistent under weak distributional assumptions. Cavanagh (1987) and Kim and Pollard (1989) have shown that N1/3 times the centered maximum score estimator converges in distribution to the random variable that maximizes a certain Gaussian process. The properties of the limiting distribution are largely unknown, and the result of Cavanagh and Kim and Pollard cannot be used for inference in applications. This paper describes a modified maximum score estimator that is obtained by maximizing a smoothed version of Manski's score function. Under distributional assumptions that are somewhat stronger than Manski's but still very weak, the centered smoothed estimator is asymptotically normal with a convergence rate that is at least N-2/5 and can be made arbitrarily close to N-1/2, depending on the strength of certain smoothness assumptions. The estimator's rate of convergence is the fastest possible under the assumptions that are made. The parameters of the limiting distribution can be estimated consistently from data, thereby making statistical inference based on the smoothed estimator possible with samples that are sufficiently large.

Page Thumbnails

  • Thumbnail: Page 
505
    505
  • Thumbnail: Page 
506
    506
  • Thumbnail: Page 
507
    507
  • Thumbnail: Page 
508
    508
  • Thumbnail: Page 
509
    509
  • Thumbnail: Page 
510
    510
  • Thumbnail: Page 
511
    511
  • Thumbnail: Page 
512
    512
  • Thumbnail: Page 
513
    513
  • Thumbnail: Page 
514
    514
  • Thumbnail: Page 
515
    515
  • Thumbnail: Page 
516
    516
  • Thumbnail: Page 
517
    517
  • Thumbnail: Page 
518
    518
  • Thumbnail: Page 
519
    519
  • Thumbnail: Page 
520
    520
  • Thumbnail: Page 
521
    521
  • Thumbnail: Page 
522
    522
  • Thumbnail: Page 
523
    523
  • Thumbnail: Page 
524
    524
  • Thumbnail: Page 
525
    525
  • Thumbnail: Page 
526
    526
  • Thumbnail: Page 
527
    527
  • Thumbnail: Page 
528
    528
  • Thumbnail: Page 
529
    529
  • Thumbnail: Page 
530
    530
  • Thumbnail: Page 
531
    531