Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

A Crystalline Motion: Uniqueness and Geometric Properties

Piotr Rybka
SIAM Journal on Applied Mathematics
Vol. 57, No. 1 (Feb., 1997), pp. 53-72
Stable URL: http://www.jstor.org/stable/2951883
Page Count: 20
  • Subscribe ($19.50)
  • Cite this Item
A Crystalline Motion: Uniqueness and Geometric Properties
Preview not available

Abstract

The author studies a model of crystalline motion in the plane. Existence and uniqueness of local in time solutions are shown. Geometric properties of the flow are studied, assuming that the Wulff shape is a regular N-sided polygon. The author shows that a small, convex grain of ice immersed in the cold melt shrinks, provided that the flow does not overly deform the initial interface. The author is able to verify the last condition only if the initial interface is a scaled Wulff shape. In this case, the free boundary will remain a scaled Wulff shape at later times. This is shown by using an isoperimetric inequality.

Page Thumbnails

  • Thumbnail: Page 
53
    53
  • Thumbnail: Page 
54
    54
  • Thumbnail: Page 
55
    55
  • Thumbnail: Page 
56
    56
  • Thumbnail: Page 
57
    57
  • Thumbnail: Page 
58
    58
  • Thumbnail: Page 
59
    59
  • Thumbnail: Page 
60
    60
  • Thumbnail: Page 
61
    61
  • Thumbnail: Page 
62
    62
  • Thumbnail: Page 
63
    63
  • Thumbnail: Page 
64
    64
  • Thumbnail: Page 
65
    65
  • Thumbnail: Page 
66
    66
  • Thumbnail: Page 
67
    67
  • Thumbnail: Page 
68
    68
  • Thumbnail: Page 
69
    69
  • Thumbnail: Page 
70
    70
  • Thumbnail: Page 
71
    71
  • Thumbnail: Page 
72
    72