Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Coupling of Mixed Finite Elements and Boundary Elements for a Hyperelastic Interface Problem

Gabriel N. Gatica and Wolfgang L. Wendland
SIAM Journal on Numerical Analysis
Vol. 34, No. 6 (Dec., 1997), pp. 2335-2356
Stable URL: http://www.jstor.org/stable/2951954
Page Count: 22
  • Subscribe ($19.50)
  • Cite this Item
Coupling of Mixed Finite Elements and Boundary Elements for a Hyperelastic Interface Problem
Preview not available

Abstract

We apply the coupling of mixed finite elements and boundary integral methods, using two integral equations on the coupling boundary, to study the weak solvability of a nonlinear elliptic problem arising in elastostatics. Our procedure is based on both the usual Brezzi's theory for linear constrained variational problems and some fundamental tools from nonlinear functional analysis. We derive existence and uniqueness of solution for the continuous variational formulations and provide general approximation results for the corresponding Galerkin schemes. Although we consider bounded domains, the same analysis applies for the case in which the boundary element region is unbounded.

Page Thumbnails

  • Thumbnail: Page 
2335
    2335
  • Thumbnail: Page 
2336
    2336
  • Thumbnail: Page 
2337
    2337
  • Thumbnail: Page 
2338
    2338
  • Thumbnail: Page 
2339
    2339
  • Thumbnail: Page 
2340
    2340
  • Thumbnail: Page 
2341
    2341
  • Thumbnail: Page 
2342
    2342
  • Thumbnail: Page 
2343
    2343
  • Thumbnail: Page 
2344
    2344
  • Thumbnail: Page 
2345
    2345
  • Thumbnail: Page 
2346
    2346
  • Thumbnail: Page 
2347
    2347
  • Thumbnail: Page 
2348
    2348
  • Thumbnail: Page 
2349
    2349
  • Thumbnail: Page 
2350
    2350
  • Thumbnail: Page 
2351
    2351
  • Thumbnail: Page 
2352
    2352
  • Thumbnail: Page 
2353
    2353
  • Thumbnail: Page 
2354
    2354
  • Thumbnail: Page 
2355
    2355
  • Thumbnail: Page 
2356
    2356