Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Hadamard Matrices and Their Applications

A. Hedayat and W. D. Wallis
The Annals of Statistics
Vol. 6, No. 6 (Nov., 1978), pp. 1184-1238
Stable URL: http://www.jstor.org/stable/2958712
Page Count: 55
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Hadamard Matrices and Their Applications
Preview not available

Abstract

An n × n matrix H with all its entries +1 and -1 is Hadamard if HH' = nI. It is well known that n must be 1, 2 or a multiple of 4 for such a matrix to exist, but is not known whether Hadamard matrices exist for every n which is a multiple of 4. The smallest order for which a Hadamard matrix has not been constructed is (as of 1977) 268. Research in the area of Hadamard matrices and their applications has steadily and rapidly grown, especially during the last three decades. These matrices can be transformed to produce incomplete block designs, t-designs, Youden designs, orthogonal F-square designs, optimal saturated resolution III designs, optimal weighing designs, maximal sets of pairwise independent random variables with uniform measure, error correcting and detecting codes, Walsh functions, and other mathematical and statistical objects. In this paper we survey the existence of Hadamard matrices and many of their applications.

Page Thumbnails

  • Thumbnail: Page 
1184
    1184
  • Thumbnail: Page 
1185
    1185
  • Thumbnail: Page 
1186
    1186
  • Thumbnail: Page 
1187
    1187
  • Thumbnail: Page 
1188
    1188
  • Thumbnail: Page 
1189
    1189
  • Thumbnail: Page 
1190
    1190
  • Thumbnail: Page 
1191
    1191
  • Thumbnail: Page 
1192
    1192
  • Thumbnail: Page 
1193
    1193
  • Thumbnail: Page 
1194
    1194
  • Thumbnail: Page 
1195
    1195
  • Thumbnail: Page 
1196
    1196
  • Thumbnail: Page 
1197
    1197
  • Thumbnail: Page 
1198
    1198
  • Thumbnail: Page 
1199
    1199
  • Thumbnail: Page 
1200
    1200
  • Thumbnail: Page 
1201
    1201
  • Thumbnail: Page 
1202
    1202
  • Thumbnail: Page 
1203
    1203
  • Thumbnail: Page 
1204
    1204
  • Thumbnail: Page 
1205
    1205
  • Thumbnail: Page 
1206
    1206
  • Thumbnail: Page 
1207
    1207
  • Thumbnail: Page 
1208
    1208
  • Thumbnail: Page 
1209
    1209
  • Thumbnail: Page 
1210
    1210
  • Thumbnail: Page 
1211
    1211
  • Thumbnail: Page 
1212
    1212
  • Thumbnail: Page 
1213
    1213
  • Thumbnail: Page 
1214
    1214
  • Thumbnail: Page 
1215
    1215
  • Thumbnail: Page 
1216
    1216
  • Thumbnail: Page 
1217
    1217
  • Thumbnail: Page 
1218
    1218
  • Thumbnail: Page 
1219
    1219
  • Thumbnail: Page 
1220
    1220
  • Thumbnail: Page 
1221
    1221
  • Thumbnail: Page 
1222
    1222
  • Thumbnail: Page 
1223
    1223
  • Thumbnail: Page 
1224
    1224
  • Thumbnail: Page 
1225
    1225
  • Thumbnail: Page 
1226
    1226
  • Thumbnail: Page 
1227
    1227
  • Thumbnail: Page 
1228
    1228
  • Thumbnail: Page 
1229
    1229
  • Thumbnail: Page 
1230
    1230
  • Thumbnail: Page 
1231
    1231
  • Thumbnail: Page 
1232
    1232
  • Thumbnail: Page 
1233
    1233
  • Thumbnail: Page 
1234
    1234
  • Thumbnail: Page 
1235
    1235
  • Thumbnail: Page 
1236
    1236
  • Thumbnail: Page 
1237
    1237
  • Thumbnail: Page 
1238
    1238