Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Consistent Nonparametric Regression

Charles J. Stone
The Annals of Statistics
Vol. 5, No. 4 (Jul., 1977), pp. 595-620
Stable URL: http://www.jstor.org/stable/2958783
Page Count: 26
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Consistent Nonparametric Regression
Preview not available

Abstract

Let (X, Y) be a pair of random variables such that X is Rd-valued and Y is Rd'-valued. Given a random sample (X1, Y1), ⋯, (Xn, Yn) from the distribution of (X, Y), the conditional distribution $P^Y(\bullet \mid X)$ of Y given X can be estimated nonparametrically by P̂n Y(A ∣ X) = ∑n 1 Wni(X)IA(Yi), where the weight function Wn is of the form Wni(X) = Wni(X, X1, ⋯, Xn), 1 ≤ i ≤ n. The weight function Wn is called a probability weight function if it is nonnegative and ∑n 1 Wni(X) = 1. Associated with $\hat{P}_n^Y(\bullet \mid X)$ in a natural way are nonparametric estimators of conditional expectations, variances, covariances, standard deviations, correlations and quantiles and nonparametric approximate Bayes rules in prediction and multiple classification problems. Consistency of a sequence {Wn} of weight functions is defined and sufficient conditions for consistency are obtained. When applied to sequences of probability weight functions, these conditions are both necessary and sufficient. Consistent sequences of probability weight functions defined in terms of nearest neighbors are constructed. The results are applied to verify the consistency of the estimators of the various quantities discussed above and the consistency in Bayes risk of the approximate Bayes rules.

Page Thumbnails

  • Thumbnail: Page 
595
    595
  • Thumbnail: Page 
596
    596
  • Thumbnail: Page 
597
    597
  • Thumbnail: Page 
598
    598
  • Thumbnail: Page 
599
    599
  • Thumbnail: Page 
600
    600
  • Thumbnail: Page 
601
    601
  • Thumbnail: Page 
602
    602
  • Thumbnail: Page 
603
    603
  • Thumbnail: Page 
604
    604
  • Thumbnail: Page 
605
    605
  • Thumbnail: Page 
606
    606
  • Thumbnail: Page 
607
    607
  • Thumbnail: Page 
608
    608
  • Thumbnail: Page 
609
    609
  • Thumbnail: Page 
610
    610
  • Thumbnail: Page 
611
    611
  • Thumbnail: Page 
612
    612
  • Thumbnail: Page 
613
    613
  • Thumbnail: Page 
614
    614
  • Thumbnail: Page 
615
    615
  • Thumbnail: Page 
616
    616
  • Thumbnail: Page 
617
    617
  • Thumbnail: Page 
618
    618
  • Thumbnail: Page 
619
    619
  • Thumbnail: Page 
620
    620