Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Sample Functions of the Gaussian Process

R. M. Dudley
The Annals of Probability
Vol. 1, No. 1 (Feb., 1973), pp. 66-103
Stable URL: http://www.jstor.org/stable/2959347
Page Count: 38
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Sample Functions of the Gaussian Process
Preview not available

Abstract

This is a survey on sample function properties of Gaussian processes with the main emphasis on boundedness and continuity, including Holder conditions locally and globally. Many other sample function properties are briefly treated. The main new results continue the program of reducing general Gaussian processes to "the" standard isonormal linear process $L$ on a Hilbert space $H$, then applying metric entropy methods. In this paper Holder conditions, optimal up to multiplicative constants, are found for wide classes of Gaussian processes. If $H$ is $L^2$ of Lebesgue measure on $R^k, L$ is called "white noise." It is proved that we can write $L = P(D)\lbrack x\rbrack$ in the distribution sense where $x$ has continuous sample functions if $P(D)$ is an elliptic operator of degree $> k/2$. Also $L$ has continuous sample functions when restricted to indicator functions of sets whose boundaries are more than $k - 1$ times differentiable in a suitable sense. Another new result is that for the Levy(-Baxter) theorem $\int^1_0(dx_t)^2 = 1$ on Brownian motion, almost sure convergence holds for any sequence of partitions of mesh $o(1/\log n)$. If partitions into measurable sets other than intervals are allowed, the above is best possible: $\mathscr{O}(1/\log n)$ is insufficient.

Page Thumbnails

  • Thumbnail: Page 
66
    66
  • Thumbnail: Page 
67
    67
  • Thumbnail: Page 
68
    68
  • Thumbnail: Page 
69
    69
  • Thumbnail: Page 
70
    70
  • Thumbnail: Page 
71
    71
  • Thumbnail: Page 
72
    72
  • Thumbnail: Page 
73
    73
  • Thumbnail: Page 
74
    74
  • Thumbnail: Page 
75
    75
  • Thumbnail: Page 
76
    76
  • Thumbnail: Page 
77
    77
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87
  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91
  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
96
    96
  • Thumbnail: Page 
97
    97
  • Thumbnail: Page 
98
    98
  • Thumbnail: Page 
99
    99
  • Thumbnail: Page 
100
    100
  • Thumbnail: Page 
101
    101
  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103