Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On the Glivenko-Cantelli Theorem for Weighted Empiricals Based on Independent Random Variables

Radhey S. Singh
The Annals of Probability
Vol. 3, No. 2 (Apr., 1975), pp. 371-374
Stable URL: http://www.jstor.org/stable/2959403
Page Count: 4
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On the Glivenko-Cantelli Theorem for Weighted Empiricals Based on Independent Random Variables
Preview not available

Abstract

For $X_1, \cdots, X_n$ independent real valued random variables and for $\alpha \in \lbrack 0, 1 \rbrack$, let $F_j(x) = \alpha P\lbrack X_j < x \rbrack + (1 - \alpha)P\lbrack X_j \leqq x \rbrack$ and $Y_j(x) = \alpha I_{\lbrack X_j < x \rbrack} + (1 - \alpha) I_{\lbrack X_j \leqq x \rbrack}$, where $I_A$ is the indicator function of the set $A$. For numbers $w_1, w_2, \cdots, w_n$, let $D_n = \sup_{x, \alpha} \max_{N \leqq n}|\sum^N_1 w_j(Y_j(x) - F_j(x))|$. We will obtain an exponential bound for $P\lbrack D_n \geqq a \rbrack$ and a rate for almost sure convergence of $D_n$. When $w_j \equiv 1$ the bound and the rate become, respectively, $4a \exp \{-2((a^2/n) - 1)\}$ and $O((n \log n)^{\frac{1}{2}})$.

Page Thumbnails

  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374