Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Steady-State Analysis of RBM in a Rectangle: Numerical Methods and A Queueing Application

J. G. Dai and J. M. Harrison
The Annals of Applied Probability
Vol. 1, No. 1 (Feb., 1991), pp. 16-35
Stable URL: http://www.jstor.org/stable/2959623
Page Count: 20
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Steady-State Analysis of RBM in a Rectangle: Numerical Methods and A Queueing Application
Preview not available

Abstract

Multidimensional reflected Brownian motions, also called regulated Brownian motions or simply RBM's, arise as approximate models of queueing networks. Thus the stationary distributions of these diffusion processes are of interest for steady-state analysis of the corresponding queueing systems. This paper considers two-dimensional semimartingale RBM's with rectangular state space, which include the RBM's that serve as approximate models of finite queues in tandem. The stationary distribution of such an RBM is uniquely characterized by a certain basic adjoint relationship, and an algorithm is proposed for numerical solution of that relationship. We cannot offer a general proof of convergence, but the algorithm has been coded and applied to special cases where the stationary distribution can be determined by other means; the computed solutions agree closely with previously known results and convergence is reasonably fast. Our current computer code is specific to two-dimensional rectangles, but the basic logic of the algorithm applies equally well to any semimartingale RBM with bounded polyhedral state space, regardless of dimension. To demonstrate the role of the algorithm in practical performance analysis, we use it to derive numerical performance estimates for a particular example of finite queues in tandem; our numerical estimates of both the throughput loss rate and the average queue lengths are found to agree with simulated values to within about five percent.

Page Thumbnails

  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32
  • Thumbnail: Page 
33
    33
  • Thumbnail: Page 
34
    34
  • Thumbnail: Page 
35
    35